skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ganeshan, Sriram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the possibility of a many-body mobility edge in the generalized Aubry-André (GAA) model with interactions using the Shift-Invert Matrix Product States (SIMPS) algorithm [Phys. Rev. Lett. 118, 017201 (2017)]. The noninteracting GAA model is a one-dimensional quasiperiodic model with a self-duality-induced mobility edge. To search for a many-body mobility edge in the interacting case, we exploit the advantages of SIMPS that it targets many-body states in an energy-resolved fashion and does not require all many-body states to be localized for some to converge. Our analysis indicates that the targeted states in the presence of the single-particle mobility edge match neither “MBL-like” (where MBL denotes many-body localization) fully converged localized states nor the fully delocalized case in which SIMPS fails to converge. We benchmark the algorithm's output both for parameters that give fully converged, “MBL-like” localized states and for delocalized parameters where SIMPS fails to converge. In the intermediate cases, where the parameters produce a single-particle mobility edge, we find many-body states that develop entropy oscillations as a function of cut position at larger bond dimensions. These oscillations at larger bond dimensions, which are also found in the fully localized benchmark but not the fully delocalized benchmark, occur both at the band edge and center and may indicate convergence to a nonthermal state (either localized or critical). 
    more » « less
  2. We study quantum dynamics on noncommutative spaces of negative curvature, focusing on the hyperbolic plane with spatial noncommutativity in the presence of a constant magnetic field. We show that the synergy of noncommutativity and the magnetic field tames the exponential divergence of operator growth caused by the negative curvature of the hyperbolic space. Their combined effect results in a first-order transition at a critical value of the magnetic field in which strong quantum effects subdue the exponential divergence for all energies, in stark contrast to the commutative case, where for high enough energies operator growth always diverge exponentially. This transition manifests in the entanglement entropy between the `left' and `right' Hilbert spaces of spatial degrees of freedom. In particular, the entanglement entropy in the lowest Landau level vanishes beyond the critical point. We further present a non-linear solvable bosonic model that realizes the underlying algebraic structure of the noncommutative hyperbolic plane with a magnetic field. 
    more » « less
  3. null (Ed.)